
Worksheet 9-5 Waves on Strings

1. A string is fixed between the wave driver and pulley located 50.0 cm apart. A 200. g mass is attached to the end of the string providing the tension. When a wave generator vibrates at 150. Hz the string resonates in the third mode.

- a. Sketch the first five modes of vibration for this setup.
- b. Find the wavelength for each of these modes.
- c. Determine the speed of the wave for each of these modes.
- d. Determine the frequency for each of these modes.

Number of Antinodes	Diagram	Wavelength	Frequency	Wave Speed
1	ł			
2	·			
3	·			
4	·			
5	ŀ			

- 2. The same string is later found to have a wave speed of 100.0 m/s.
 - a. What could have caused this to happen?
 - b. Complete the chart for the first four modes of vibration when the wave speed is 100. m/s.

Number of Antinodes	Diagram	Wavelength	Frequency	Wave Speed
1	ł			
2				
3	1			
4				

- 3. Eric Clapton plucks a string on his guitar which causes the string to vibrate with a standing wave that has four nodes and has a frequency of 440 Hz. The wave travels down the string at 176 m/s.
 - a. How long is a wave on the string? Draw a diagram of the standing wave.
 - b. How long is the vibrating string?
- 4. Describe some factors that a guitar player can use to vary the frequency (pitch) of the sound produced by a guitar. Describe the change that each one would produce in the pitch of the sound. (Hint: you should be able to identify four changes that affect the pitch.)

1.

Number of Antinodes	Diagram	Wavelength	Frequency	Wave Speed
1		1.00 m	50.0 Hz	50.0 m/s
2		0.500 m	100. Hz	50.0 m/s
3		0.333 m	150. Hz	50.0 m/s
4		0.250 m	200. Hz	50.0 m/s
5		0.200 m	250. Hz	50.0 m/s

2a. The most likely reason for an increase in speed is an increase in tension.

2b.

Number of Antinodes	Diagram	Wavelength	Frequency	Wave Speed
1		1.00 m	100. Hz	100. m/s
2		0.500 m	200. Hz	100. m/s
3		0.333 m	300. Hz	100. m/s
4		0.250 m	400. Hz	100. m/s

3a.
$$v = f\lambda$$

$$\lambda = \frac{v}{f}$$

$$\lambda = \frac{176 \text{ m/s}}{440 \text{ Hz}}$$

$$\lambda = \boxed{0.40 \text{ m}}$$
3b.
$$L = \boxed{0.60 \text{ m}}$$

4. Change the length of the string, the tension of the string, the mass of the string, or create a node at a point other than the ends of the string.